Special values of Green functions at big CM points

نویسندگان

  • Jan Hendrik Bruinier
  • Stephen S. Kudla
  • Tonghai Yang
  • T. H. Yang
چکیده

We give a formula for the values of automorphic Green functions on the special rational 0-cycles (big CM points) attached to certain maximal tori in the Shimura varieties associated to rational quadratic spaces of signature (2d, 2). Our approach depends on the fact that the Green functions in question are constructed as regularized theta lifts of harmonic weak Maass forms, and it involves the Siegel-Weil formula and the central derivatives of incoherent Eisenstein series for totally real fields. In the case of a weakly holomorphic form, the formula is an explicit combination of quantities obtained from the Fourier coefficients of the central derivative of the incoherent Eisenstein series. In the case of a general harmonic weak Maass form, there is an additional term given by the central derivative of a Rankin-Selberg type convolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CM values of automorphic Green functions on orthogonal groups over totally real fields

Generalizing work of Gross–Zagier and Schofer on singular moduli, we study the CM values of regularized theta lifts of harmonic Whittaker forms. We compute the archimedian part of the height pairing of arithmetic special divisors and CM cycles on Shimura varieties associated to quadratic spaces over an arbitrary totally real base field. As a special case, we obtain an explicit formula for the n...

متن کامل

Moduli Fields of Cm-motives Applied to Hilbert's 12-th Problem

We apply the theorem of Shimura and Taniyama to compute the largest abelian extension of a CM-eld E which can be obtained by evaluating E-rational automorphic functions at certain special points of Shimura varieties. Abelian class eld theory classiies the abelian extensions of a number eld k, but does not explain how to generate the elds. In his Jugendtraum, Kronecker suggested that the abelian...

متن کامل

Class Invariants for Quartic Cm Fields

One can define class invariants for a quartic primitive CM field K as special values of certain Siegel (or Hilbert) modular functions at CM points corresponding to K. Such constructions were given in [DSG] and [Lau]. We provide explicit bounds on the primes appearing in the denominators of these algebraic numbers. This allows us, in particular, to construct S-units in certain abelian extensions...

متن کامل

A pr 2 00 4 CLASS INVARIANTS FOR QUARTIC CM FIELDS EYAL

One can define class invariants for a quartic primitive CM field K as special values of certain Siegel (or Hilbert) modular functions at CM points corresponding to K. Such constructions were given in [DSG] and [Lau]. We provide explicit bounds on the primes appearing in the denominators of these algebraic numbers. This allows us, in particular, to construct S-units in certain abelian extensions...

متن کامل

Elliptic Functions, Green Functions and the Mean Field Equations on Tori

We show that the Green functions on flat tori can have either 3 or 5 critical points only. There does not seem to be any direct method to attack this problem. Instead, we have to employ sophisticated non-linear partial differential equations to study it. We also study the distribution of number of critical points over the moduli space of flat tori through deformations. The functional equations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011